网站首页 > 技术教程 正文
今天我们给出梯度下降(Gradient Descent)的推导示例,通过一个简单的例子让我们理解GD的流程和本质。
其实梯度下降是比较怂的解决方案,实在是在数学方法没辙了,那我就用物理的方法:按照一定的步长遍历参数空间,为了加快搜索,每次都沿下降最快的方向寻找,直到找到最佳的参数解;当然这也是一种直觉上的解决方案,就跟在游戏中搜索地图一样,不停去尝试。
这个方法的优缺点也是一目了然的:
相对于矩阵求逆,梯度下降理解简单,计算也简单;
其缺点是迭代较慢,有可能陷入局部最优。
梯度下降的公式推导和示例如下:
在如上的示例中,我们已知y = 2*x + 3的4个样本,GD的学习率取0.1,示例中给出了前两步的计算推导,供参考。
程序计算的迭代数据如下所示,跟手推的一样:
GD对学习率比较敏感,取值过小,迭代极慢;取值过大,可能跑过了,震荡较大,甚至无法收敛。
业界的说法,一般学习率取0.01比较合适。
如下三张图给出了取不同学习率下w,b,J的收敛曲线。
(如果觉得文章不错,请点在看支持,谢谢!)
猜你喜欢
- 2024-10-16 机器学习中应用的范数 机器学习中常见的超参照数调整
- 2024-10-16 有限元求解:结构应力法如何实现的网格不敏感呢?
- 2024-10-16 论利用粒子群算法求解测距定位方程
- 2024-10-16 推荐系统多样性——DPP篇 推荐系统的模型
- 2024-10-16 线性代数主要可以从几个角度去理解: (1)线性方程...
- 2024-10-16 numpy入门 day05 numpy eig
- 2024-10-16 python多进程矩阵计算的应用示例 python多进程队列
- 2024-10-16 计量课后5.4(大数据202230906137 HSl)
- 2024-10-16 TensorFlow 2:使用自编码器进行插值
- 2024-10-16 Matlab矩阵的简单操作 matlab如何进行矩阵运算
你 发表评论:
欢迎- 05-05从virsh当中学习QEMU/KVM启动命令
- 05-05Win10 BCD文件损坏怎么修复?(bcd文件损坏win7)
- 05-05亚马逊春节假期期间的店铺管理设置
- 05-051分钟总结常用k8s常用诊断教程(k8s常见故障)
- 05-05VisiPics重复图片查找软件中文汉化教程
- 05-05微服务的发布实现方式1灰度实现(微服务实现原理)
- 05-05轻松掌握Java多线程 - 第二章:线程的生命周期
- 05-05德拉诺之王邪DK报告:PVE向小测试及分析
- 最近发表
- 标签列表
-
- sd分区 (65)
- raid5数据恢复 (81)
- 地址转换 (73)
- 手机存储卡根目录 (55)
- tcp端口 (74)
- project server (59)
- 双击ctrl (55)
- 鼠标 单击变双击 (67)
- debugview (59)
- 字符动画 (65)
- flushdns (57)
- ps复制快捷键 (57)
- 清除系统垃圾代码 (58)
- web服务器的架设 (67)
- 16进制转换 (69)
- xclient (55)
- ps源文件 (67)
- filezilla server (59)
- 句柄无效 (56)
- word页眉页脚设置 (59)
- ansys实例 (56)
- 6 1 3固件 (59)
- sqlserver2000挂起 (59)
- vm虚拟主机 (55)
- config (61)
本文暂时没有评论,来添加一个吧(●'◡'●)