网站首页 > 技术教程 正文
需要的前置数学知识:一元一次,一元二次方程的解法,基本的初中代数。
会用到的记号
读者对象:初中高年级,高中生,大学低年级学生以及其它数学爱好者。讲解了矩阵,增广矩阵,矩阵乘法,转置,行列向量,求矩阵的逆等基本矩阵操作。以线性方程导入。力求推理清楚,核心要点明确。后续下一篇会有矩阵与几何变换。
一次方程组的矩阵形式
一元一次方程
解写成:
二元一次方程组
的解不能写得像一元方程这么简单,我们通过例子看一下。
叫2X2的矩阵
叫列向量,常数项也可以用列向量表示为
有了矩阵与列向量的概念,就可以将二元方程组与一元方程统一写成一样的形式。二元方程组写成
形式上与一元方程一样。为了让解的形式上也一样,就要有
如果要让AX能与方程组形式对应起来就必须使得A的第一行的每个元素与X的每个元素对位相乘加起来,做为第一个方程的左边,用A的第二行的每个元素与X的每个元素对位乘再加起来做为第二个方程的左边,从代数上看会形成一个列向量如下:
这就是矩阵与列向量相乘的基本法则,简单记忆为行与列对位相乘后再加起来。
例1. 计算
我们发现,
乘以任意的列向量,结果不变,我们就叫这个特殊的主对角线全为1,其它元素为0的矩阵为幺矩阵,类比于数“1”。记为I
模仿
就有
那么解方程的过程可以形式化写成
这个A-1叫做矩阵A的逆矩阵。
如果我们把X,C扩展成三元列向量,A扩展成3x3矩阵,上面的过程依然可以用,而且矩阵与列向量的乘法规则不变。为了使得我们介绍的这套方案具有可操作性,需要求矩阵的逆矩阵,需要求矩阵与列向量的乘法,需要矩阵与矩阵的乘法。接下来讲这些概念与方法。
列向量与行向量
是一个列向量,我们也可以定义行向量
矩阵转置
WW可以看成w行列对位对调形成的,也叫转置。对于一个矩阵A我们也可以定义其转置,也是对位的行与列对调。
向量的数积
我们可以定义行向量与列向量的数积,也叫内积如下
矩阵的乘法
A是个矩阵,A-1当然也就是个矩阵。一般地两个2x2的矩阵A,B的乘积可以这样加以扩充
把B看成一个两个列向量横向拼接而成的数阵,把A看成一个两个行向量纵向拼接而成的数阵。
AB乘积也是个2x2的矩阵,那么,AB第1行第1列的元素就是A的第一行向量与B的第一列向量的数积,第1行第2列的元素就是A的第一行向量与B的第二列向量的乘积,第二行第一个元素是A的第2行向量与B的第一列向量的数乘,第二行第2个元素的是A第2行向量与B的第2列向量的数积。我们也可以按上述方式定义nxn的两个矩阵A,B的乘积,乘积的第i行,第j列的元素为
矩阵乘法符合结合律
但
所以
矩阵的乘法已经不符合交换律了。例如
矩阵转置的一些性质
按转置的定义就有
下面证明
最后我们讲矩阵求逆的方法,这是最重要的,也是本文的难点。
矩阵求逆
矩阵中最核心的思想之一是用矩阵作用矩阵。
会使得x,y发生交换,这就是矩阵的作用。设R是一个nxn的矩阵,如果对角线上的元素除去
其它位置都是0
作用于任意的nxn矩阵,会使得其i行与j行发生交换。而一个主对角线全为1,i行,j列元素为1,其它元素为0的矩阵
作用于nxn的矩阵,会导致,第i行是第i行与j行的对位和,其它不变.如果
第i行会出现第i行与第j行的对位差。
将幺矩阵I的元素变为
其它主对角线元素还是1,那么作用于任意nxn矩阵,则矩阵的第i行的每一个元素都变大a倍,其余不变。这样我们可以精心设计一组矩阵R1,R2,…,RN将一个nxn的矩阵A变为一个幺矩阵,每一次用矩阵乘无非是在模拟消元法解方程的步骤而已。
于是我们有
也就是说我们可以按下面的程序来求矩阵的逆。
第一步,把nxn的矩阵A扩充为一个新的矩阵,前面n列保持不变,后面添加n列,添加的n列恰形成一个幺矩阵。这个扩充的新矩阵叫原来矩阵的增广矩阵。
第二步,可以对任意一行的所有元素同乘一个数,同除一个数,
也可以将任意两行加减替换掉其中的任意一行。
第三步,如果前n列已经是一个幺矩阵,或者主对角线除去1就是0,而其它地方的元素全为0,就终止过程,否则重复第二步。
第四步,如果前面的n列已经变为幺矩阵,则后面的n列形成的矩阵就是A的逆矩阵了。
例题2,求
的逆矩阵
解:
所以
以上手续就可以帮我们解任意一次方程组了,当然具体的程序还有很多技巧,不在我们的讲解范围内。
猜你喜欢
- 2024-10-16 机器学习中应用的范数 机器学习中常见的超参照数调整
- 2024-10-16 有限元求解:结构应力法如何实现的网格不敏感呢?
- 2024-10-16 论利用粒子群算法求解测距定位方程
- 2024-10-16 推荐系统多样性——DPP篇 推荐系统的模型
- 2024-10-16 线性代数主要可以从几个角度去理解: (1)线性方程...
- 2024-10-16 numpy入门 day05 numpy eig
- 2024-10-16 python多进程矩阵计算的应用示例 python多进程队列
- 2024-10-16 计量课后5.4(大数据202230906137 HSl)
- 2024-10-16 TensorFlow 2:使用自编码器进行插值
- 2024-10-16 Matlab矩阵的简单操作 matlab如何进行矩阵运算
你 发表评论:
欢迎- 05-05从virsh当中学习QEMU/KVM启动命令
- 05-05Win10 BCD文件损坏怎么修复?(bcd文件损坏win7)
- 05-05亚马逊春节假期期间的店铺管理设置
- 05-051分钟总结常用k8s常用诊断教程(k8s常见故障)
- 05-05VisiPics重复图片查找软件中文汉化教程
- 05-05微服务的发布实现方式1灰度实现(微服务实现原理)
- 05-05轻松掌握Java多线程 - 第二章:线程的生命周期
- 05-05德拉诺之王邪DK报告:PVE向小测试及分析
- 最近发表
- 标签列表
-
- sd分区 (65)
- raid5数据恢复 (81)
- 地址转换 (73)
- 手机存储卡根目录 (55)
- tcp端口 (74)
- project server (59)
- 双击ctrl (55)
- 鼠标 单击变双击 (67)
- debugview (59)
- 字符动画 (65)
- flushdns (57)
- ps复制快捷键 (57)
- 清除系统垃圾代码 (58)
- web服务器的架设 (67)
- 16进制转换 (69)
- xclient (55)
- ps源文件 (67)
- filezilla server (59)
- 句柄无效 (56)
- word页眉页脚设置 (59)
- ansys实例 (56)
- 6 1 3固件 (59)
- sqlserver2000挂起 (59)
- vm虚拟主机 (55)
- config (61)
本文暂时没有评论,来添加一个吧(●'◡'●)